Accelerating multi-objective neural architecture search by random-weight evaluation

نویسندگان

چکیده

Abstract For the goal of automated design high-performance deep convolutional neural networks (CNNs), architecture search (NAS) methodology is becoming increasingly important for both academia and industries. Due to costly stochastic gradient descent training CNNs performance evaluation, most existing NAS methods are computationally expensive real-world deployments. To address this issue, we first introduce a new estimation metric, named random-weight evaluation (RWE) quantify quality in cost-efficient manner. Instead fully entire CNN, RWE only trains its last layer leaves remainders with randomly initialized weights, which results single network seconds. Second, complexity metric adopted multi-objective balance model size performance. Overall, our proposed method obtains set efficient models state-of-the-art two spaces. Then obtained on CIFAR-10 dataset transferred ImageNet validate practicality algorithm. Moreover, ablation studies NAS-Bench-301 datasets reveal effectiveness estimating compared methods.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Neural Architecture Search using Performance Prediction

Methods for neural network hyperparameter optimization and meta-modeling are computationally expensive due to the need to train a large number of model configurations. In this paper, we show that standard frequentist regression models can predict the final performance of partially trained model configurations using features based on network architectures, hyperparameters, and time-series valida...

متن کامل

Multi-objective transportation network design: Accelerating search by applying ε-NSGAII

The optimization of infrastructure planning in a multimodal passenger transportation network is formulated as a multi-objective network design problem, with accessibility, use of urban space by parking, operating deficit and climate impact as objectives. Decision variables are the location of park and ride facilities, train stations and the frequency of public transport lines. For a real life c...

متن کامل

A random search heuristic for a multi-objective production planning

Real world production planning is involved in optimizing different objectives while considering a spectrum of parameters, decision variables, and constraints of the corresponding cases. This comes from the fact that production managers desire to utilize from an ideal production plan by considering a number of objectives over a set of technological constraints. This paper presents a new multi-ob...

متن کامل

Introspection: Accelerating Neural Network Training By Learning Weight Evolution

Neural Networks are function approximators that have achieved state-of-the-art accuracy in numerous machine learning tasks. In spite of their great success in terms of accuracy, their large training time makes it difficult to use them for various tasks. In this paper, we explore the idea of learning weight evolution pattern from a simple network for accelerating training of novel neural network...

متن کامل

solution of security constrained unit commitment problem by a new multi-objective optimization method

چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Complex & Intelligent Systems

سال: 2021

ISSN: ['2198-6053', '2199-4536']

DOI: https://doi.org/10.1007/s40747-021-00594-5